Dash Core Source Documentation (0.16.0.1)

Find detailed information regarding the Dash Core source code.

field_5x52_impl.h
Go to the documentation of this file.
1 /**********************************************************************
2  * Copyright (c) 2013, 2014 Pieter Wuille *
3  * Distributed under the MIT software license, see the accompanying *
4  * file COPYING or http://www.opensource.org/licenses/mit-license.php.*
5  **********************************************************************/
6 
7 #ifndef SECP256K1_FIELD_REPR_IMPL_H
8 #define SECP256K1_FIELD_REPR_IMPL_H
9 
10 #if defined HAVE_CONFIG_H
11 #include "libsecp256k1-config.h"
12 #endif
13 
14 #include "util.h"
15 #include "field.h"
16 
17 #if defined(USE_ASM_X86_64)
18 #include "field_5x52_asm_impl.h"
19 #else
20 #include "field_5x52_int128_impl.h"
21 #endif
22 
31 #ifdef VERIFY
32 static void secp256k1_fe_verify(const secp256k1_fe *a) {
33  const uint64_t *d = a->n;
34  int m = a->normalized ? 1 : 2 * a->magnitude, r = 1;
35  /* secp256k1 'p' value defined in "Standards for Efficient Cryptography" (SEC2) 2.7.1. */
36  r &= (d[0] <= 0xFFFFFFFFFFFFFULL * m);
37  r &= (d[1] <= 0xFFFFFFFFFFFFFULL * m);
38  r &= (d[2] <= 0xFFFFFFFFFFFFFULL * m);
39  r &= (d[3] <= 0xFFFFFFFFFFFFFULL * m);
40  r &= (d[4] <= 0x0FFFFFFFFFFFFULL * m);
41  r &= (a->magnitude >= 0);
42  r &= (a->magnitude <= 2048);
43  if (a->normalized) {
44  r &= (a->magnitude <= 1);
45  if (r && (d[4] == 0x0FFFFFFFFFFFFULL) && ((d[3] & d[2] & d[1]) == 0xFFFFFFFFFFFFFULL)) {
46  r &= (d[0] < 0xFFFFEFFFFFC2FULL);
47  }
48  }
49  VERIFY_CHECK(r == 1);
50 }
51 #endif
52 
54  uint64_t t0 = r->n[0], t1 = r->n[1], t2 = r->n[2], t3 = r->n[3], t4 = r->n[4];
55 
56  /* Reduce t4 at the start so there will be at most a single carry from the first pass */
57  uint64_t m;
58  uint64_t x = t4 >> 48; t4 &= 0x0FFFFFFFFFFFFULL;
59 
60  /* The first pass ensures the magnitude is 1, ... */
61  t0 += x * 0x1000003D1ULL;
62  t1 += (t0 >> 52); t0 &= 0xFFFFFFFFFFFFFULL;
63  t2 += (t1 >> 52); t1 &= 0xFFFFFFFFFFFFFULL; m = t1;
64  t3 += (t2 >> 52); t2 &= 0xFFFFFFFFFFFFFULL; m &= t2;
65  t4 += (t3 >> 52); t3 &= 0xFFFFFFFFFFFFFULL; m &= t3;
66 
67  /* ... except for a possible carry at bit 48 of t4 (i.e. bit 256 of the field element) */
68  VERIFY_CHECK(t4 >> 49 == 0);
69 
70  /* At most a single final reduction is needed; check if the value is >= the field characteristic */
71  x = (t4 >> 48) | ((t4 == 0x0FFFFFFFFFFFFULL) & (m == 0xFFFFFFFFFFFFFULL)
72  & (t0 >= 0xFFFFEFFFFFC2FULL));
73 
74  /* Apply the final reduction (for constant-time behaviour, we do it always) */
75  t0 += x * 0x1000003D1ULL;
76  t1 += (t0 >> 52); t0 &= 0xFFFFFFFFFFFFFULL;
77  t2 += (t1 >> 52); t1 &= 0xFFFFFFFFFFFFFULL;
78  t3 += (t2 >> 52); t2 &= 0xFFFFFFFFFFFFFULL;
79  t4 += (t3 >> 52); t3 &= 0xFFFFFFFFFFFFFULL;
80 
81  /* If t4 didn't carry to bit 48 already, then it should have after any final reduction */
82  VERIFY_CHECK(t4 >> 48 == x);
83 
84  /* Mask off the possible multiple of 2^256 from the final reduction */
85  t4 &= 0x0FFFFFFFFFFFFULL;
86 
87  r->n[0] = t0; r->n[1] = t1; r->n[2] = t2; r->n[3] = t3; r->n[4] = t4;
88 
89 #ifdef VERIFY
90  r->magnitude = 1;
91  r->normalized = 1;
92  secp256k1_fe_verify(r);
93 #endif
94 }
95 
97  uint64_t t0 = r->n[0], t1 = r->n[1], t2 = r->n[2], t3 = r->n[3], t4 = r->n[4];
98 
99  /* Reduce t4 at the start so there will be at most a single carry from the first pass */
100  uint64_t x = t4 >> 48; t4 &= 0x0FFFFFFFFFFFFULL;
101 
102  /* The first pass ensures the magnitude is 1, ... */
103  t0 += x * 0x1000003D1ULL;
104  t1 += (t0 >> 52); t0 &= 0xFFFFFFFFFFFFFULL;
105  t2 += (t1 >> 52); t1 &= 0xFFFFFFFFFFFFFULL;
106  t3 += (t2 >> 52); t2 &= 0xFFFFFFFFFFFFFULL;
107  t4 += (t3 >> 52); t3 &= 0xFFFFFFFFFFFFFULL;
108 
109  /* ... except for a possible carry at bit 48 of t4 (i.e. bit 256 of the field element) */
110  VERIFY_CHECK(t4 >> 49 == 0);
111 
112  r->n[0] = t0; r->n[1] = t1; r->n[2] = t2; r->n[3] = t3; r->n[4] = t4;
113 
114 #ifdef VERIFY
115  r->magnitude = 1;
116  secp256k1_fe_verify(r);
117 #endif
118 }
119 
121  uint64_t t0 = r->n[0], t1 = r->n[1], t2 = r->n[2], t3 = r->n[3], t4 = r->n[4];
122 
123  /* Reduce t4 at the start so there will be at most a single carry from the first pass */
124  uint64_t m;
125  uint64_t x = t4 >> 48; t4 &= 0x0FFFFFFFFFFFFULL;
126 
127  /* The first pass ensures the magnitude is 1, ... */
128  t0 += x * 0x1000003D1ULL;
129  t1 += (t0 >> 52); t0 &= 0xFFFFFFFFFFFFFULL;
130  t2 += (t1 >> 52); t1 &= 0xFFFFFFFFFFFFFULL; m = t1;
131  t3 += (t2 >> 52); t2 &= 0xFFFFFFFFFFFFFULL; m &= t2;
132  t4 += (t3 >> 52); t3 &= 0xFFFFFFFFFFFFFULL; m &= t3;
133 
134  /* ... except for a possible carry at bit 48 of t4 (i.e. bit 256 of the field element) */
135  VERIFY_CHECK(t4 >> 49 == 0);
136 
137  /* At most a single final reduction is needed; check if the value is >= the field characteristic */
138  x = (t4 >> 48) | ((t4 == 0x0FFFFFFFFFFFFULL) & (m == 0xFFFFFFFFFFFFFULL)
139  & (t0 >= 0xFFFFEFFFFFC2FULL));
140 
141  if (x) {
142  t0 += 0x1000003D1ULL;
143  t1 += (t0 >> 52); t0 &= 0xFFFFFFFFFFFFFULL;
144  t2 += (t1 >> 52); t1 &= 0xFFFFFFFFFFFFFULL;
145  t3 += (t2 >> 52); t2 &= 0xFFFFFFFFFFFFFULL;
146  t4 += (t3 >> 52); t3 &= 0xFFFFFFFFFFFFFULL;
147 
148  /* If t4 didn't carry to bit 48 already, then it should have after any final reduction */
149  VERIFY_CHECK(t4 >> 48 == x);
150 
151  /* Mask off the possible multiple of 2^256 from the final reduction */
152  t4 &= 0x0FFFFFFFFFFFFULL;
153  }
154 
155  r->n[0] = t0; r->n[1] = t1; r->n[2] = t2; r->n[3] = t3; r->n[4] = t4;
156 
157 #ifdef VERIFY
158  r->magnitude = 1;
159  r->normalized = 1;
160  secp256k1_fe_verify(r);
161 #endif
162 }
163 
165  uint64_t t0 = r->n[0], t1 = r->n[1], t2 = r->n[2], t3 = r->n[3], t4 = r->n[4];
166 
167  /* z0 tracks a possible raw value of 0, z1 tracks a possible raw value of P */
168  uint64_t z0, z1;
169 
170  /* Reduce t4 at the start so there will be at most a single carry from the first pass */
171  uint64_t x = t4 >> 48; t4 &= 0x0FFFFFFFFFFFFULL;
172 
173  /* The first pass ensures the magnitude is 1, ... */
174  t0 += x * 0x1000003D1ULL;
175  t1 += (t0 >> 52); t0 &= 0xFFFFFFFFFFFFFULL; z0 = t0; z1 = t0 ^ 0x1000003D0ULL;
176  t2 += (t1 >> 52); t1 &= 0xFFFFFFFFFFFFFULL; z0 |= t1; z1 &= t1;
177  t3 += (t2 >> 52); t2 &= 0xFFFFFFFFFFFFFULL; z0 |= t2; z1 &= t2;
178  t4 += (t3 >> 52); t3 &= 0xFFFFFFFFFFFFFULL; z0 |= t3; z1 &= t3;
179  z0 |= t4; z1 &= t4 ^ 0xF000000000000ULL;
180 
181  /* ... except for a possible carry at bit 48 of t4 (i.e. bit 256 of the field element) */
182  VERIFY_CHECK(t4 >> 49 == 0);
183 
184  return (z0 == 0) | (z1 == 0xFFFFFFFFFFFFFULL);
185 }
186 
188  uint64_t t0, t1, t2, t3, t4;
189  uint64_t z0, z1;
190  uint64_t x;
191 
192  t0 = r->n[0];
193  t4 = r->n[4];
194 
195  /* Reduce t4 at the start so there will be at most a single carry from the first pass */
196  x = t4 >> 48;
197 
198  /* The first pass ensures the magnitude is 1, ... */
199  t0 += x * 0x1000003D1ULL;
200 
201  /* z0 tracks a possible raw value of 0, z1 tracks a possible raw value of P */
202  z0 = t0 & 0xFFFFFFFFFFFFFULL;
203  z1 = z0 ^ 0x1000003D0ULL;
204 
205  /* Fast return path should catch the majority of cases */
206  if ((z0 != 0ULL) & (z1 != 0xFFFFFFFFFFFFFULL)) {
207  return 0;
208  }
209 
210  t1 = r->n[1];
211  t2 = r->n[2];
212  t3 = r->n[3];
213 
214  t4 &= 0x0FFFFFFFFFFFFULL;
215 
216  t1 += (t0 >> 52);
217  t2 += (t1 >> 52); t1 &= 0xFFFFFFFFFFFFFULL; z0 |= t1; z1 &= t1;
218  t3 += (t2 >> 52); t2 &= 0xFFFFFFFFFFFFFULL; z0 |= t2; z1 &= t2;
219  t4 += (t3 >> 52); t3 &= 0xFFFFFFFFFFFFFULL; z0 |= t3; z1 &= t3;
220  z0 |= t4; z1 &= t4 ^ 0xF000000000000ULL;
221 
222  /* ... except for a possible carry at bit 48 of t4 (i.e. bit 256 of the field element) */
223  VERIFY_CHECK(t4 >> 49 == 0);
224 
225  return (z0 == 0) | (z1 == 0xFFFFFFFFFFFFFULL);
226 }
227 
229  r->n[0] = a;
230  r->n[1] = r->n[2] = r->n[3] = r->n[4] = 0;
231 #ifdef VERIFY
232  r->magnitude = 1;
233  r->normalized = 1;
234  secp256k1_fe_verify(r);
235 #endif
236 }
237 
239  const uint64_t *t = a->n;
240 #ifdef VERIFY
241  VERIFY_CHECK(a->normalized);
242  secp256k1_fe_verify(a);
243 #endif
244  return (t[0] | t[1] | t[2] | t[3] | t[4]) == 0;
245 }
246 
248 #ifdef VERIFY
249  VERIFY_CHECK(a->normalized);
250  secp256k1_fe_verify(a);
251 #endif
252  return a->n[0] & 1;
253 }
254 
256  int i;
257 #ifdef VERIFY
258  a->magnitude = 0;
259  a->normalized = 1;
260 #endif
261  for (i=0; i<5; i++) {
262  a->n[i] = 0;
263  }
264 }
265 
266 static int secp256k1_fe_cmp_var(const secp256k1_fe *a, const secp256k1_fe *b) {
267  int i;
268 #ifdef VERIFY
269  VERIFY_CHECK(a->normalized);
270  VERIFY_CHECK(b->normalized);
271  secp256k1_fe_verify(a);
272  secp256k1_fe_verify(b);
273 #endif
274  for (i = 4; i >= 0; i--) {
275  if (a->n[i] > b->n[i]) {
276  return 1;
277  }
278  if (a->n[i] < b->n[i]) {
279  return -1;
280  }
281  }
282  return 0;
283 }
284 
285 static int secp256k1_fe_set_b32(secp256k1_fe *r, const unsigned char *a) {
286  r->n[0] = (uint64_t)a[31]
287  | ((uint64_t)a[30] << 8)
288  | ((uint64_t)a[29] << 16)
289  | ((uint64_t)a[28] << 24)
290  | ((uint64_t)a[27] << 32)
291  | ((uint64_t)a[26] << 40)
292  | ((uint64_t)(a[25] & 0xF) << 48);
293  r->n[1] = (uint64_t)((a[25] >> 4) & 0xF)
294  | ((uint64_t)a[24] << 4)
295  | ((uint64_t)a[23] << 12)
296  | ((uint64_t)a[22] << 20)
297  | ((uint64_t)a[21] << 28)
298  | ((uint64_t)a[20] << 36)
299  | ((uint64_t)a[19] << 44);
300  r->n[2] = (uint64_t)a[18]
301  | ((uint64_t)a[17] << 8)
302  | ((uint64_t)a[16] << 16)
303  | ((uint64_t)a[15] << 24)
304  | ((uint64_t)a[14] << 32)
305  | ((uint64_t)a[13] << 40)
306  | ((uint64_t)(a[12] & 0xF) << 48);
307  r->n[3] = (uint64_t)((a[12] >> 4) & 0xF)
308  | ((uint64_t)a[11] << 4)
309  | ((uint64_t)a[10] << 12)
310  | ((uint64_t)a[9] << 20)
311  | ((uint64_t)a[8] << 28)
312  | ((uint64_t)a[7] << 36)
313  | ((uint64_t)a[6] << 44);
314  r->n[4] = (uint64_t)a[5]
315  | ((uint64_t)a[4] << 8)
316  | ((uint64_t)a[3] << 16)
317  | ((uint64_t)a[2] << 24)
318  | ((uint64_t)a[1] << 32)
319  | ((uint64_t)a[0] << 40);
320  if (r->n[4] == 0x0FFFFFFFFFFFFULL && (r->n[3] & r->n[2] & r->n[1]) == 0xFFFFFFFFFFFFFULL && r->n[0] >= 0xFFFFEFFFFFC2FULL) {
321  return 0;
322  }
323 #ifdef VERIFY
324  r->magnitude = 1;
325  r->normalized = 1;
326  secp256k1_fe_verify(r);
327 #endif
328  return 1;
329 }
330 
332 static void secp256k1_fe_get_b32(unsigned char *r, const secp256k1_fe *a) {
333 #ifdef VERIFY
334  VERIFY_CHECK(a->normalized);
335  secp256k1_fe_verify(a);
336 #endif
337  r[0] = (a->n[4] >> 40) & 0xFF;
338  r[1] = (a->n[4] >> 32) & 0xFF;
339  r[2] = (a->n[4] >> 24) & 0xFF;
340  r[3] = (a->n[4] >> 16) & 0xFF;
341  r[4] = (a->n[4] >> 8) & 0xFF;
342  r[5] = a->n[4] & 0xFF;
343  r[6] = (a->n[3] >> 44) & 0xFF;
344  r[7] = (a->n[3] >> 36) & 0xFF;
345  r[8] = (a->n[3] >> 28) & 0xFF;
346  r[9] = (a->n[3] >> 20) & 0xFF;
347  r[10] = (a->n[3] >> 12) & 0xFF;
348  r[11] = (a->n[3] >> 4) & 0xFF;
349  r[12] = ((a->n[2] >> 48) & 0xF) | ((a->n[3] & 0xF) << 4);
350  r[13] = (a->n[2] >> 40) & 0xFF;
351  r[14] = (a->n[2] >> 32) & 0xFF;
352  r[15] = (a->n[2] >> 24) & 0xFF;
353  r[16] = (a->n[2] >> 16) & 0xFF;
354  r[17] = (a->n[2] >> 8) & 0xFF;
355  r[18] = a->n[2] & 0xFF;
356  r[19] = (a->n[1] >> 44) & 0xFF;
357  r[20] = (a->n[1] >> 36) & 0xFF;
358  r[21] = (a->n[1] >> 28) & 0xFF;
359  r[22] = (a->n[1] >> 20) & 0xFF;
360  r[23] = (a->n[1] >> 12) & 0xFF;
361  r[24] = (a->n[1] >> 4) & 0xFF;
362  r[25] = ((a->n[0] >> 48) & 0xF) | ((a->n[1] & 0xF) << 4);
363  r[26] = (a->n[0] >> 40) & 0xFF;
364  r[27] = (a->n[0] >> 32) & 0xFF;
365  r[28] = (a->n[0] >> 24) & 0xFF;
366  r[29] = (a->n[0] >> 16) & 0xFF;
367  r[30] = (a->n[0] >> 8) & 0xFF;
368  r[31] = a->n[0] & 0xFF;
369 }
370 
372 #ifdef VERIFY
373  VERIFY_CHECK(a->magnitude <= m);
374  secp256k1_fe_verify(a);
375 #endif
376  r->n[0] = 0xFFFFEFFFFFC2FULL * 2 * (m + 1) - a->n[0];
377  r->n[1] = 0xFFFFFFFFFFFFFULL * 2 * (m + 1) - a->n[1];
378  r->n[2] = 0xFFFFFFFFFFFFFULL * 2 * (m + 1) - a->n[2];
379  r->n[3] = 0xFFFFFFFFFFFFFULL * 2 * (m + 1) - a->n[3];
380  r->n[4] = 0x0FFFFFFFFFFFFULL * 2 * (m + 1) - a->n[4];
381 #ifdef VERIFY
382  r->magnitude = m + 1;
383  r->normalized = 0;
384  secp256k1_fe_verify(r);
385 #endif
386 }
387 
389  r->n[0] *= a;
390  r->n[1] *= a;
391  r->n[2] *= a;
392  r->n[3] *= a;
393  r->n[4] *= a;
394 #ifdef VERIFY
395  r->magnitude *= a;
396  r->normalized = 0;
397  secp256k1_fe_verify(r);
398 #endif
399 }
400 
402 #ifdef VERIFY
403  secp256k1_fe_verify(a);
404 #endif
405  r->n[0] += a->n[0];
406  r->n[1] += a->n[1];
407  r->n[2] += a->n[2];
408  r->n[3] += a->n[3];
409  r->n[4] += a->n[4];
410 #ifdef VERIFY
411  r->magnitude += a->magnitude;
412  r->normalized = 0;
413  secp256k1_fe_verify(r);
414 #endif
415 }
416 
418 #ifdef VERIFY
419  VERIFY_CHECK(a->magnitude <= 8);
420  VERIFY_CHECK(b->magnitude <= 8);
421  secp256k1_fe_verify(a);
422  secp256k1_fe_verify(b);
423  VERIFY_CHECK(r != b);
424  VERIFY_CHECK(a != b);
425 #endif
426  secp256k1_fe_mul_inner(r->n, a->n, b->n);
427 #ifdef VERIFY
428  r->magnitude = 1;
429  r->normalized = 0;
430  secp256k1_fe_verify(r);
431 #endif
432 }
433 
434 static void secp256k1_fe_sqr(secp256k1_fe *r, const secp256k1_fe *a) {
435 #ifdef VERIFY
436  VERIFY_CHECK(a->magnitude <= 8);
437  secp256k1_fe_verify(a);
438 #endif
439  secp256k1_fe_sqr_inner(r->n, a->n);
440 #ifdef VERIFY
441  r->magnitude = 1;
442  r->normalized = 0;
443  secp256k1_fe_verify(r);
444 #endif
445 }
446 
447 static SECP256K1_INLINE void secp256k1_fe_cmov(secp256k1_fe *r, const secp256k1_fe *a, int flag) {
448  uint64_t mask0, mask1;
449  mask0 = flag + ~((uint64_t)0);
450  mask1 = ~mask0;
451  r->n[0] = (r->n[0] & mask0) | (a->n[0] & mask1);
452  r->n[1] = (r->n[1] & mask0) | (a->n[1] & mask1);
453  r->n[2] = (r->n[2] & mask0) | (a->n[2] & mask1);
454  r->n[3] = (r->n[3] & mask0) | (a->n[3] & mask1);
455  r->n[4] = (r->n[4] & mask0) | (a->n[4] & mask1);
456 #ifdef VERIFY
457  if (a->magnitude > r->magnitude) {
458  r->magnitude = a->magnitude;
459  }
460  r->normalized &= a->normalized;
461 #endif
462 }
463 
465  uint64_t mask0, mask1;
466  mask0 = flag + ~((uint64_t)0);
467  mask1 = ~mask0;
468  r->n[0] = (r->n[0] & mask0) | (a->n[0] & mask1);
469  r->n[1] = (r->n[1] & mask0) | (a->n[1] & mask1);
470  r->n[2] = (r->n[2] & mask0) | (a->n[2] & mask1);
471  r->n[3] = (r->n[3] & mask0) | (a->n[3] & mask1);
472 }
473 
475 #ifdef VERIFY
476  VERIFY_CHECK(a->normalized);
477 #endif
478  r->n[0] = a->n[0] | a->n[1] << 52;
479  r->n[1] = a->n[1] >> 12 | a->n[2] << 40;
480  r->n[2] = a->n[2] >> 24 | a->n[3] << 28;
481  r->n[3] = a->n[3] >> 36 | a->n[4] << 16;
482 }
483 
485  r->n[0] = a->n[0] & 0xFFFFFFFFFFFFFULL;
486  r->n[1] = a->n[0] >> 52 | ((a->n[1] << 12) & 0xFFFFFFFFFFFFFULL);
487  r->n[2] = a->n[1] >> 40 | ((a->n[2] << 24) & 0xFFFFFFFFFFFFFULL);
488  r->n[3] = a->n[2] >> 28 | ((a->n[3] << 36) & 0xFFFFFFFFFFFFFULL);
489  r->n[4] = a->n[3] >> 16;
490 #ifdef VERIFY
491  r->magnitude = 1;
492  r->normalized = 1;
493 #endif
494 }
495 
496 #endif /* SECP256K1_FIELD_REPR_IMPL_H */
#define VERIFY_CHECK(cond)
Definition: util.h:67
static SECP256K1_INLINE void secp256k1_fe_sqr_inner(uint32_t *r, const uint32_t *a)
static void secp256k1_fe_get_b32(unsigned char *r, const secp256k1_fe *a)
Convert a field element to a 32-byte big endian value.
static int secp256k1_fe_set_b32(secp256k1_fe *r, const unsigned char *a)
static SECP256K1_INLINE void secp256k1_fe_cmov(secp256k1_fe *r, const secp256k1_fe *a, int flag)
static void secp256k1_fe_sqr(secp256k1_fe *r, const secp256k1_fe *a)
static void secp256k1_fe_normalize(secp256k1_fe *r)
Implements arithmetic modulo FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFE FFFFFC2F...
static SECP256K1_INLINE void secp256k1_fe_mul_inner(uint32_t *r, const uint32_t *a, const uint32_t *SECP256K1_RESTRICT b)
#define SECP256K1_INLINE
Definition: secp256k1.h:123
static int secp256k1_fe_normalizes_to_zero(secp256k1_fe *r)
#define SECP256K1_RESTRICT
Definition: util.h:97
static void secp256k1_fe_to_storage(secp256k1_fe_storage *r, const secp256k1_fe *a)
static SECP256K1_INLINE void secp256k1_fe_storage_cmov(secp256k1_fe_storage *r, const secp256k1_fe_storage *a, int flag)
uint32_t n[10]
Definition: field_10x26.h:16
static SECP256K1_INLINE void secp256k1_fe_mul_int(secp256k1_fe *r, int a)
static int secp256k1_fe_normalizes_to_zero_var(secp256k1_fe *r)
static SECP256K1_INLINE void secp256k1_fe_negate(secp256k1_fe *r, const secp256k1_fe *a, int m)
static void secp256k1_fe_normalize_weak(secp256k1_fe *r)
static SECP256K1_INLINE void secp256k1_fe_clear(secp256k1_fe *a)
static SECP256K1_INLINE int secp256k1_fe_is_zero(const secp256k1_fe *a)
static int secp256k1_fe_cmp_var(const secp256k1_fe *a, const secp256k1_fe *b)
static void secp256k1_fe_mul(secp256k1_fe *r, const secp256k1_fe *a, const secp256k1_fe *SECP256K1_RESTRICT b)
static void secp256k1_fe_normalize_var(secp256k1_fe *r)
static SECP256K1_INLINE void secp256k1_fe_add(secp256k1_fe *r, const secp256k1_fe *a)
static SECP256K1_INLINE void secp256k1_fe_from_storage(secp256k1_fe *r, const secp256k1_fe_storage *a)
static SECP256K1_INLINE int secp256k1_fe_is_odd(const secp256k1_fe *a)
static SECP256K1_INLINE void secp256k1_fe_set_int(secp256k1_fe *r, int a)
Released under the MIT license